ANNUAL WATER QUALITY REPORT
Reporting Year 2021

Presented By
City of Atlanta, Texas

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (903) 796-7153, ext. 114.
Questions

Protecting Your Water

Bacteria are a natural and important part of our world. There are around 40 trillion bacteria living in each of us; without them, we would not be able to live healthy lives. Coliform bacteria are common in the environment and generally not harmful themselves. The presence of this bacterial form in drinking water is a concern, however, because it indicates that the water may be contaminated with other organisms that can cause disease.

In 2016 the U.S. EPA passed a regulation called the Revised Total Coliform Rule, which requires water systems to take additional steps to ensure the integrity of the drinking water distribution system by monitoring for the presence of bacteria like total coliform and *E. coli*. The rule requires more stringent standards than the previous regulation, and it requires water systems that may be vulnerable to contamination to have procedures in place that will minimize the incidence of contamination. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment and correct any problems quickly.

The U.S. EPA anticipates greater public health protection under this regulation due to its more preventive approach to identifying and fixing problems that may affect public health.

Though we are fortunate in having the highest-quality drinking water, our goal is to eliminate all potential pathways of contamination into our distribution system, and this requirement helps us accomplish that goal.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

Where Does My Water Come From?

The City of Atlanta receives water from Lake Wright Patman through a purchase contract with the City of Texarkana, Texas. The lake is a U.S. Army Corps of Engineers reservoir formed on the Sulphur River in Bowie and Cass Counties by Wright Patman Dam. The reservoir provides flood control and water conservation for the communities downstream from the dam. The lake is also a popular recreational destination.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. The City Council meets the first and third Monday of each month beginning at 5:30 p.m. at City Hall, 315 North Buckner Street, Atlanta.

Think Before You Flush!

Flushing unused or expired medicines can be harmful to your drinking water. Properly disposing of unused or expired medication helps protect you and the environment. Keep medications out of our waterways by disposing responsibly. To find a convenient drop-off location near you, please visit https://bit.ly/3IeRyXy.

When the well is dry, we know the worth of water.

—Benjamin Franklin

We’ve Come a Long Way

Once again, we are proud to present our annual water quality report covering the period between January 1 and December 31, 2021. In a matter of only a few decades, drinking water has become exponentially safer and more reliable than at any other point in human history. Our exceptional staff continues to work hard every day—at all hours—to deliver the highest-quality drinking water without interruption. Although the challenges ahead are many, we feel that by relentlessly investing in customer outreach and education, new treatment technologies, system upgrades, and training, the payoff will be reliable, high-quality tap water delivered to you and your family.

For more information about this report, or for any questions relating to your drinking water, please call Becky Allen, Water Utility Representative, at (903) 796-7153, ext. 114.
Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

- **Microbial Contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;
- **Inorganic Contaminants**, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;
- **Pesticides and Herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- **Organic Chemical Contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban stormwater runoff, and septic systems;
- **Radioactive Contaminants**, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA’s Safe Drinking Water Hotline at (800) 426-4791.

Benefits of Chlorination

Disinfection, a chemical process used to control disease-causing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment. By far, the most common method of disinfection in North America is chlorination.

Before communities began routinely treating drinking water with chlorine (starting with Chicago and Jersey City in 1908), cholera, typhoid fever, dysentery, and hepatitis A killed thousands of U.S. residents annually. Drinking water chlorination and filtration have helped to virtually eliminate these diseases in the U.S. Significant strides in public health are directly linked to the adoption of drinking water chlorination. In fact, the filtration of drinking water and the use of chlorine are probably the most significant public health advancements in human history.

How chlorination works:

- **Potent Germicide Reduction** in the level of many disease-causing microorganisms in drinking water to almost immeasurable levels.
- **Taste and Odor Reduction** of many disagreeable tastes and odors from foul-smelling algae secretions, sulfides, and decaying vegetation.
- **Biological Growth Elimination** of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.
- **Chemical Removal** of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. It also helps to remove iron and manganese from raw water.

Naturally Occurring Bacteria

The simple fact is bacteria and other microorganisms inhabit our world. They can be found all around us: in our food, on our skin, in our bodies, and in the air, soil, and water. Some are harmful to us and some are not. Coliform bacteria are common in the environment and generally not harmful themselves. The presence of this bacterial form in drinking water is a concern because it indicates that the water may be contaminated with other organisms that can cause disease. Throughout the year, we tested many water samples for coliform bacteria. In that time, none of the samples came back positive for the bacteria.

Federal regulations require that public water that tests positive for coliform bacteria must be further analyzed for fecal coliform bacteria. Fecal coliforms are present only in human and animal waste. Because these bacteria can cause illness, it is unacceptable for fecal coliforms to be present in water at any concentration. Our tests indicate no fecal coliform is present in our water.
Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen and disinfectant levels and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at that time. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use and avoid using hot water to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

Definitions

- **90th %ile**: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

- **AL (Action Level)**: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

- **MCL (Maximum Contaminant Level)**: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close as feasible using the best available treatment technology.

- **MCLG (Maximum Contaminant Level Goal)**: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

- **MRDL (Maximum Residual Disinfectant Level)**: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

- **MRDLG (Maximum Residual Disinfectant Level Goal)**: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

- **NTU (Nephelometric Turbidity Units)**: Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

- **ppb (parts per billion)**: One part substance per billion parts water (or micrograms per liter).

- **ppm (parts per million)**: One part substance per million parts water (or milligrams per liter).

- **TT (Treatment Technique)**: A required process intended to reduce the level of a contaminant in drinking water.
Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

The percentage of total organic carbon (TOC) removal was measured each month, and the system met all TOC removal requirements set.

REGULATED SUBSTANCES

<table>
<thead>
<tr>
<th>SUBSTANCE (UNIT OF MEASURE)</th>
<th>YEAR SAMPLED</th>
<th>MCL [MRDL]</th>
<th>MCLG [MRDLG]</th>
<th>AMOUNT DETECTED</th>
<th>RANGE LOW-HIGH</th>
<th>AMOUNT DETECTED</th>
<th>RANGE LOW-HIGH</th>
<th>VIOLATION</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine (ppb)</td>
<td>2021</td>
<td>3</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>0.0001</td>
<td>NA</td>
<td>No</td>
<td>Runoff from herbicide used on row crops</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>2021</td>
<td>2</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>0.004</td>
<td>NA</td>
<td>No</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>2021</td>
<td>4</td>
<td>4</td>
<td>NA</td>
<td>NA</td>
<td>0.028</td>
<td>NA</td>
<td>No</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Haloacetic Acids [HAAs]–Stage 1 (ppb)</td>
<td>2021</td>
<td>60</td>
<td>NA</td>
<td>22</td>
<td>9.1–31.5</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene (ppb)</td>
<td>2021</td>
<td>50</td>
<td>50</td>
<td>NA</td>
<td>NA</td>
<td>0.0003</td>
<td>NA</td>
<td>No</td>
<td>Discharge from chemical factories</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>2021</td>
<td>10</td>
<td>10</td>
<td>0.0167</td>
<td>0.0167–0.0167</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>TTHMs [total trihalomethanes]–Stage 11 (ppb)</td>
<td>2021</td>
<td>80</td>
<td>NA</td>
<td>75</td>
<td>52–91.7</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Turbidity2 (NTU)</td>
<td>2021</td>
<td>TT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.60</td>
<td>ND–0.60</td>
<td>No</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Turbidity (lowest monthly percent of samples meeting limit)</td>
<td>2021</td>
<td>TT = 95% of samples meet the limit</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>98.9</td>
<td>NA</td>
<td>No</td>
<td>Soil runoff</td>
</tr>
</tbody>
</table>

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

<table>
<thead>
<tr>
<th>SUBSTANCE (UNIT OF MEASURE)</th>
<th>YEAR SAMPLED</th>
<th>AL</th>
<th>MCLG</th>
<th>AMOUNT DETECTED (90TH %ILE)</th>
<th>SITES ABOVE AL/TOTAL SITES</th>
<th>VIOLATION</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm)</td>
<td>2019</td>
<td>1.3</td>
<td>1.3</td>
<td>0.044</td>
<td>0/20</td>
<td>No</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

1 Some people who drink water containing trihalomethanes in excess of the maximum contaminant level (MCL) over many years may experience problems with their liver, kidneys, or central nervous system and may have an increased risk of getting cancer.

2 Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.