ANNUAL WATER QUALITY REPORT
REPORTING YEAR 2019

Presented By
City of ATLANTA

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (903) 796-7153.

PWS ID#: TX0340001
Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2019. Over the years, we have dedicated ourselves to delivering drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please remember that we are always available should you ever have any questions or concerns about your water.

Where Does My Water Come From?

The City of Atlanta receives water from Lake Wright Patman through a purchase contract with City of Texarkana, Texas. The lake is a U.S. Army Corps of Engineers reservoir formed on the Sulphur River in Bowie and Cass counties by Wright Patman Dam. The reservoir provides flood control and water conservation for the communities downstream from the dam. The lake is also a popular recreational destination.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. The City Council meets the 1st and 3rd Mondays of each month beginning at 5:30 p.m. at City Hall, 315 N. Buckner, Atlanta, TX 75551.

Source Water Assessment

The City of Atlanta purchases water from the City of Texarkana, Texas. The water is treated at the Graphic Packaging International Texarkana Mill. The source of our treated surface water is Wright Patman Lake in Cass County, Texas.

No source water assessment for your drinking water source(s) has been conducted by the TCEQ for your water system. The report describes the susceptibility and the types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information in this assessment allows us to focus our source water protection strategies.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

For more information about this report, or for any questions relating to your drinking water, please call Becky Allen, Water Utility Representative, at (903) 796-7153 ext. 114.
Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA’s Safe Drinking Water Hotline at (800) 426-4791.

FOG (Fats, Oils, and Grease)

You may not be aware of it, but every time you pour fat, oil, or grease (FOG) down your sink (e.g., bacon grease), you are contributing to a costly problem in the sewer collection system. FOG coats the inner walls of the plumbing in your house as well as the walls of underground piping throughout the community. Over time, these greasy materials build up and form blockages in pipes, which can lead to wastewater backing up into parks, yards, streets, and storm drains. These backups allow FOG to contaminate local waters, including drinking water. Exposure to untreated wastewater is a public health hazard. FOG discharged into septic systems and drain fields can also cause malfunctions, resulting in more frequent tank pump-outs and other expenses.

Communities spend billions of dollars every year to unplug or replace grease-blocked pipes, repair pump stations, and clean up costly and illegal wastewater spills. Here are some tips that you and your family can follow to help maintain a well-run system now and in the future:

NEVER:

- Pour fats, oil, or grease down the house or storm drains.
- Dispose of food scraps by flushing them.
- Use the toilet as a waste basket.

ALWAYS:

- Scrape and collect fat, oil, and grease into a waste container such as an empty coffee can, and dispose of it with your garbage.
- Place food scraps in waste containers or garbage bags for disposal with solid wastes.
- Place a wastebasket in each bathroom for solid wastes like disposable diapers, creams and lotions, and personal hygiene products including nonbiodegradable wipes.
Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. Also, the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

The percentage of Total Organic Carbon (TOC) removal was measured each month, and the system met all TOC removal requirements set.

The City experienced TTHM exceedence for a two-quarter period beginning 7/01/2019 and ending 12/31/2019. The City purchases water that is treated at the Graphic Packaging paper mill. The filtration processes at the mill were not robust enough at removing TTHMs for our local operators to remain in compliance during this time frame. The water plant has since modified treatment processes, and we have already seen an improvement in our first-quarter test results. Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their livers, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

<table>
<thead>
<tr>
<th>REGULATED SUBSTANCES</th>
<th>City of Atlanta</th>
<th>Graphic Packaging Mill</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSTANCE</td>
<td>YEAR SAMPLED</td>
<td>MCL [MRDL]</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>2019</td>
<td>2</td>
</tr>
<tr>
<td>Chlorine (ppm)</td>
<td>2019</td>
<td>[4]</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>2019</td>
<td>4</td>
</tr>
<tr>
<td>Haloacetic Acids [HAAs] (ppb)</td>
<td>2019</td>
<td>60</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>2019</td>
<td>10</td>
</tr>
<tr>
<td>TTHMs [Total Trihalomethanes] (ppb)</td>
<td>2019</td>
<td>80</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>2019</td>
<td>TT</td>
</tr>
<tr>
<td>Turbidity (Lowest monthly percent of samples meeting limit)</td>
<td>2019</td>
<td>TT = 95% of samples meet the limit</td>
</tr>
</tbody>
</table>

Tap water samples were collected for lead and copper analyses from sample sites throughout the community.

<table>
<thead>
<tr>
<th>UNREGULATED SUBSTANCES (GRAPHIC PACKAGING MILL)</th>
<th>SUBSTANCE</th>
<th>YEAR SAMPLED</th>
<th>AMOUNT DETECTED</th>
<th>RANGE LOW-HIGH</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane (ppb)</td>
<td>2019</td>
<td>7.12</td>
<td>7.12–7.12</td>
<td>By-product of drinking water disinfection</td>
<td></td>
</tr>
<tr>
<td>Chlordoform (ppb)</td>
<td>2019</td>
<td>66.10</td>
<td>66.10–66.10</td>
<td>By-products of drinking water disinfection</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane (ppb)</td>
<td>2019</td>
<td>2.52</td>
<td>2.52–2.52</td>
<td>By-product of drinking water disinfection</td>
<td></td>
</tr>
</tbody>
</table>

1 Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of monitoring unregulated contaminant is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.
The number of gallons of water produced daily by public water systems in the U.S. **34 BILLION**

The number of miles of drinking water distribution mains in the U.S. **1 MILLION**

The amount of money spent annually on maintaining the public water infrastructure in the U.S. **135 BILLION**

The number of Americans who receive water from a public water system. **300 MILLION**

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.